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A value-like parameter is introduced into a rate equation for describing variable-interval
performance. The equation, derived solely from formal considerations, expresses rate of
responding as a joint function of rate of reinforcement and "reinforcer power." Prelim-
inary tests of the rate equation show that it handles univariate data as well as Herrn-
stein's hyperbola. In addition, a form of Herrnstein's hyperbola can be derived from the
equation, and it predicts forms of matching in concurrent situations. For the multivariate
case, reinforcer values scaled in concurrent situations where matching is assumed to hold
are taken as determinations of reinforcer power. The multivariate rate equation is fitted
to an appropriate set of data and found to provide a good description of variable-interval
performance when both rate and power of reinforcement are varied. Rate and power mea-
sures completely describe reinforcement. The effects of their joint variation are not pre-
dicted and cannot be described by Herrnstein's equation.
Key words: value, mathematics, variable-interval schedules, linear systems, reinforce-

ment rate, response rate, matching, law of effect

For responding maintained by variable-
interval (VI) reinforcement, Herrnstein's hy-
perbola,

kr
r + re ' (1)

expresses rate of responding (R) as a function
of one independent variable, viz., rate of rein-
forcement (r). The equation can also be made
to accommodate amount or immediacy of rein-
forcement as an independent variable by di-
rectly substituting one or the other in place
of r (deVilliers & Herrnstein, 1976). The em-
pirical accuracy of Herrnstein's equation (de-
Villiers & Herrnstein, 1976) indicates that the
relationship between response rate and each
of these reinforcement parameters is hyper-
bolic. However, the equation does not specify
how the parameters combine to determine
response rate.
The problem of how various parameters of

reinforcement jointly govern behavior has

1The authors wish to thank Len Charlap, Xenia
Coulter and her laboratory group, David Cross, How-
ard Rachlin, S. Rappaport, and L. Wilcox for their
helpful comments on an earlier version of this paper.
Robert Kessel is now at the Department of Physics,
University of Kansas. Reprints may be obtained from
J. J McDowell, Department of Psychology, State Uni-
versity of New York at Stony Brook, Stony Brook,
New York 11794.

been discussed by a number of authors in the
context of relative response rate matching
(Baum, 1973; Baum & Rachlin, 1969; Killeen,
1972; Rachlin, 1971). According to Killeen
(1972), who has provided the most general
treatment, reinforcer "value" (V) may be de-
fined by a multiplicative combination of un-
specified functions of rate (r), amount (a), im-
mediacy (i), and other presumably important
parameters (x), of reinforcement:

V = fh(r) f2(a) f(,) fI(x). (2)
Baum & Rachlin (1969) argue that matching
occurs with respect to value:

T,- VI
T, V2

where T1 is the time allocated to one response
alternative, V1 is the value of reinforcement
accruing to that responding, and T2 and V2
are corresponding quantities for a second re-
sponse alternative. Determining the forms of
the various functions in Equation 2 is pre-
sumably an empirical matter, as is the specifi-
cation of the additional reinforcement param-
eters represented by x.
The idea of reinforcer value has been dis-

cussed only cursorily in the context of single-
alternative responding (see deVilliers & Herrn-
stein, 1976). Yet absolute response rate varies
as a function of at least three different param-
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eters of reinforcement, and Herrnstein's hy-
perbola can account for these variations only
by taking the parameters one at a time. In
the present paper, we introduce a value-like
parameter into a rate equation for describing
VI performance. In contrast to the empirical
approach characteristic of matching, however,
we have taken an a priori mathematical ap-
proach to the problem of value.2 A mathemati-
cal description of reinforcement and respond-
ing on VI schedules, and the derivation of a
multivariate rate equation for VI responding,
will be presented first. The remainder of the
paper will discuss the accuracy and utility of
the multivariate rate equation.

THE MATHEMATICS
OF VI PERFORMANCE

Simple time dependent schedules of rein-
forcement permit a straightforward descrip-
tion of behavior. Simple time dependence
characterizes those schedules where both re-
inforcement and behavior are expressed only
as functions of time. The schedule and the
resulting behavior may be expressed as two
separate functions. The function describing
the schedule will be designated R(t), i.e., re-
inforcement as a function of time; and the
function describing the resulting behavior
will be designated B(t), i.e., behavior, or oper-
ant responding, as a function of time. The
pair of functions, R(t) and B(t), constitute the
environment and the resulting behavior of an
organism. The organism is characterized by
a transfer function between R(t) and B(t). The
transfer function is not an algebraic func-
tion but is more in the nature of an operator
since its argument must be the function R(t).
For the general case, a transfer function is
usually designated G. If both R(t) and B(t) can
be written explicitly, the task of describing
behavior is reduced to the problem of finding
an appropriate transfer function.

For the case of an organism responding on
a simple time dependent schedule of rein-
forcement, the observer sees the behavior of

2Anderson's (1974) information integration theory is
another mathematical approach to the problem of
value. Farley and Fantino (1978) have applied Ander-
son's stochastic model to concurrent-chains procedures
with good results. However, they do not discuss single-
alternative responding in detail and it is not clear how
Anderson's model could be used to describe responding
in the simpler case.

a one-port black box (one input and one out-
put). The term "black box" means that the
analysis is concerned with the transfer func-
tion only, not with the actual mechanisms by
which the transfer function occurs in the or-
ganism. The analysis can be generalized to
the case of an organism responding to more
than one simple time-dependent schedule. In
the most general case, the observer sees the
behavior of an m-input, n-output black box.
The term "network" is often used to describe
a many-ported black box. Although the cal-
culations involved for a more complex net-
work are likely to be difficult, it is important
to note that many types of behavior may be
analyzed as networks.
A VI schedule presents an organism with

a single time-dependent input, and in response
the organism produces a single time-dependent
output (cf. Staddon, 1964). Reinforcements
and responses on VI schedules occur with
random-length intervals between them. The
mean values of these intervals are time-aver-
aged constants. A VI transfer function can
relate only these averaged input and output
properties. What is shown in the following
pages is a first calculation of a transfer func-
tion between the time-averaged properties of
VI reinforcement and responding.

Let reinforcements and responses occur at
a sequence of times ti and t¶j ("t star sub-i")
respectively. That is, at t = ti a reinforcement
occurs, and at t = t¶j a response is executed.
The ti's and t*j's must satisfy two conditions.
First, the specific points at which the ti's and
t¶j's occur must be random.3 Second, a con-
stant time-averaged rate of reinforcement must
produce a constant time-averaged rate of re-
sponding. These conditions are required by
the empirical nature of VI schedules and the
performance they generate (see, e.g., Catania
& Reynolds, 1968). A function having these
properties, and involving the t4's must be writ-
ten for the reinforcement signal, and a similar
function involving the t¶i's must be written
for the response output.

Assumptions
The selection of an exact functional form

for R(t) and B(t) is based on a number of as-

3That is, knowledge of any subsequence of the points
t, or t*,, for the VI case, carries no information about
where the points t, or t*, occur in any other disjoint
subsequence.
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sumptions. These assumptions reflect how we
choose to describe reinforcement and respond-
ing. Clearly, the functional form we have
selected for R(t) and B(t) is not unique. How-
ever, other forms must satisfy the conditions
already expressed for the ti's and the t¶j's.
We require four assumptions in order to

write R(t) and B(t) explicitly. First, the organ-
ism is assumed to "change state" whenever
it is reinforced and whenever it executes an

instrumental response. The size of the change
is given by the value-like parameter, A. The
symbol AR (reinforcer amplitude) will repre-
sent the change due to reinforcement; the
symbol AB (response amplitude) will represent
the change due to responding.
This change of state assumption means that

we conceive of the organism as existing in one

of three states at a given time, t. When it is
executing the instrumental response, we say
that it is in the "response state"; when it is
eating, we say that it is in the "reinforcement
state"; and when it is in neither of these
states we say that it is in the "zero state." The
critical consequence of this assumption is that
the value of R(t) and B(t) changes at each ti
and t¶j. In other words, the change of state
assumption produces functions for R(t) and
B(t) that are not identically zero (or constant)
for all t.

It is important to emphasize that this as-

sumption is critical from a mathematical point
of view. It implies the existence of nonzero
(or nonvanishing) time derivatives of R(t) and
B(t) at the reinforcement points (the ti's), and
at the response points (the t¶j's). This means

that R(t) and B(t) contain information about
where reinforcements and responses occur. The
nonmathematical conceptualization of the as-

sumption in terms of "states" of the organism,
on the other hand, is not crucial. One could
just as well say that there is "something dif-
ferent" about the points where reinforcements
and responses occur, or that the organism's
environment changes at the reinforcement
points and its behavior changes at the response
points. We have chosen the more elaborate
"change of state" conceptualization because it
seems to make the mathematics clearer.
Our second assumption is that each indi-

vidual response or reinforcement is identical
to all other like events. For food reinforce-
ment, for example, the ith feeding is assumed
to affect the organism in exactly the same way

as the (i + I)th feeding. Similarly, for a given
type of responding, the ith response is assumed
to be identical to the (i + I)th response. This
assumption places an important constraint on
responding since the amplitude, AB, of a given
response is assumed to be locked, i.e., invari-
ant, across different types (and hence ampli-
tudes) of reinforcement. On the other hand,
reinforcer amplitude, AR, is a free parameter
that may be varied experimentally.
Our third assumption is that the length of

time during which the organism is in either
the reinforcement or the response state is
finite, although it may be very small. A finite
"dead time" per reinforcement and response
implies an upper limit on the rates of rein-
forcement and responding.
And finally, the exact form of the transition

between states is assumed to be a jump discon-
tinuity. In other words, the functions R(t)
and B(t) are assumed to appear as a series of
rectangular pulses. A discontinuous transi-
tion was selected because it is the easiest to
write. Clearly, there is no a priori reason to
select any other form (e.g., gaussian, dirac
delta, or rational).

R(t) and B(t)
To give a clear picture of how R(t) is writ-

ten, an expression for a single reinforcement
will be written first. Since the form chosen is
a rectangular pulse as a function of time, a
singe reinforcement is given by

( 0 t < t, or t > t, + w ()
where ti is the initial time of the reinforce-
ment, and w is the length of time during
which the organism is in the changed state.
The inequalities on the right hand side of
Equation 3 specify the times for which the
function r(t) assumes each of its two ordinate
values. When t is between t4 and t4 + w (the
top inequality), the value of the function is
AR. When t is less than t4 or greater than ti + w
(the bottom inequality), the value of the func-
tion is zero. The function must equal either
AR or zero at any time t (except at the points
of discontinuity, ti and t, + w, where the func-
tion is undefined), and cannot assume any
other value. The lower-case r on the left hand
side of the equation simply indicates that a
single reinforcement pulse is being consid-
ered. A plot of Equation 3 is shown in Figure
1. The function is identically zero until t4
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mw
I l

ti

A section of R(t) is shown in Figure 2. No-
tice that the ith interreinforcement interval is
given by ti- (ti - 1 + w), which is the differ-
ence between the initial or "up" time of a
given reinforcement pulse, and the final or
"down" time of the preceding pulse. The aver-
age interreinforcement interval (i.e., the VI
value) .will be designated ii. The inverse of
the average interreinforcement interval is the
average rate of reinforcement, which will be
designated Rin ("rate in"). The inverse rela-
tionship between t, and Rin can be stated com-
pactly asLw...

ti + w

TIME (t)

Fig. 1. A single reinforcement pulse or spike. A.c is
the amplitude of the pulse. For t, < t < ti + w, r(t)
=AB.

after which point it becomes AR. After an ad-
ditional period of time w, the function re-
turns to zero.

For a VI input, the complete reinforcement
function, R(t), appears as a randomly distrib-
uted row of spikes, or pulses, of the form given
by Equation 3. That is,

R(t):=
A
O t+w< t< t+' (4)

where the ti's occur randomly along the t-axis
for t > to. The point to is the beginning of the
session. Clearly, R(t) is identically zero for all
t < to. The inequalities on the right hand side
of Equation 4 specify the times for which the
function R(t) assumes each of its two ordinate
values. During a reinforcement pulse (the top
inequality), the value of the function is AR.
Between reinforcement pulses (the bottom in-
equality), the value of the function is zero.

(5)
Since the average rate of reinforcement on a

VI schedule is a constant, T, must also be a

constant. This constraint is expressed in the
following limit:

n

It - (ti_l + W)

't, = iim i=1 (6)
n_oo+0 n

The expression on the right is simply the sum

of the n interreinforcement intervals divided
by n.

With Equation 6 giving the condition that
the ti's of Equation 4 must satisfy, the rein-
forcement function, R(t), is complete. Notice
that the quantities of importance in connec-
tion with R(t) are AR, the amplitude of the
reinforcement pulse; w, the width of the pulse;
and t,, the inverse of which is the average rate
of reinforcement, Rin
The R(t) axis is orthogonal to time and, for

conceptual clarity, may be thought of as a

value-like dimension. Thus a larger spike am-

plitude in Figure 2 would correspond to a

more "highly valued" reinforcer. In line with

Hw

ti-i + W ti

TIME (t)

Fig. 2. A train of reinforcement pulses. Pulses occur at t = tl, t., t3, t4 -1, t. The amplitude of each pulse
is A,. The duration of each pulse is w.

ARL

0-

L.
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the change of state assumption, one may con-
ceive of the organism as jumping (or being
boosted) to the reinforcement state at each ti
and returning (or falling back down) to the
zero state w units of time later. The greater
the value of the reinforcer, the bigger the
R(t)-axis jump.
The development of the response function,

B(t), is exactly analogous to that of the rein-
forcement function and will not be presented
in detail. Briefly,

B(t) = {
A to < t< t +w*

(7)
0 t*j+w*<t< tot1(7

where AB, the amplitude of the response pulse,
need not equal AR, and w# the width of the
response pulse, need not equal w. The in-
equalities specify the times for which the
function B(t) assumes each of its two ordinate
values. During a response pulse (the top in-
equality), the value of the function is AB. Be-
tween response pulses (the bottom inequality),
the value of the function is zero. Also, if t*,
is the average interresponse time, and Rt
("rate out") the average response rate, then

I IF*z = R..t, (8)

and
it

I tts- t 1+W*)
to = iim i =' . (9)

n-- -\- n

Equiation 8 states that the inverse of the aver-
age interresponse time is equal to the average
response rate. The expression on the right
hand side of Equation 9 is the sum of the n
interresponse times divided by n. This equa-
tion states that the average interresponse time
(or average response rate) is constant on a VI
schedule. The B(t) axis is also orthogonal to
time and may likewise be thought of as a
value-like dimension.
Equations 4 through 9 are not very re-

markable. If Figure 2 is considered an en-
larged event record of VI reinforcement or
responding, Equations 4 and 7 are simply
mathematical descriptions of the lines drawn
by the event pen. The remaining four equa-
tions define two important properties of the
VI event record, namely, that the average
interreinforcement and interresponse intervals
are invariant when large sections of the rec-
ord are compared, and that the inverses of
these average intervals (viz., the average re-

inforcement and response rates) are necessarily
invariant in the same sense. The difference
between an event record and Figure 2 is that
in the former the y-axis is arbitrary and be-
haviorally meaningless. In Figure 2 ordinates
correspond to value-like quantities.

Linear Systems and the Laplace Method
Since expressions for R(t) and B(t) have

been written the calculation of a transfer
function on R(t) is now possible. The method
used in the calculation is a modification of
the Laplace transform method of linear sys-
tem analysis. The Laplace method is common
in electrical engineering and other areas of
applied science, but since it is undoubtedly
unfamiliar to most behavioral scientists, some
general features of the method will be pre-
sented in this section.
The only requirement for applying the La-

place method is that the system under study
be linear. A system is linear if it can be de-
scribed by a linear differential equation. A
differential equation is linear if the dependent
variable and its derivatives occur only in the
first degree. Many linear differential equations
that occur in the applied sciences are difficult
to solve. The advantage of the Laplace trans-
form method is that it allows one to calculate
the output of a linear system for any given
input, without having to solve the differential
equation that describes the system.
The Laplace method is typically applied in

three steps. First, the differential equation
that describes the system is written. Second,
the Laplace transforms of both sides of the
equation are calculated. The Laplace trans-
form, F(s), of a function, F(t), is defined as

00
F(s) = f F(t)e-tdt.

Transforming both sides of a linear differ-
ential equation isolates the Laplace trans-
form, Fi(s), of the input, Fj(t), on one side of
the equation, and the Laplace transform, F0(s),
of the output, F0(t), on the other side. (The
subscript "o" indicates output; the subscript
"i" indicates input.) Notice that the original
(untransformed) expressions are functions of
time, t, and that the transformed expressions
are functions of the Laplace variate, s.

In the third step of the method, the transfer
function, G(s), is calculated from the follow-
ing definition:
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F,(s) ().

The transfer function is the ratio of the trans-
formed output to the transformed input. This
equation can also be written

F.(s) = G(s)Fj(s).

The transfer function, G(s), is said to char-
acterize the system. It is independent of any
externally applied input and is expressed in
terms of the system's components which may
be resistors and capacitors in the case of an
electrical circuit, or masses and force con-
stants in the case of a mechanical system. The
input or "forcing function", F4(t), is considered
to drive the system, G(s), which responds by
producing the output signal, F0(t). Once G(s)
is known, the output that will be produced by
any given input can be calculated from the
definition of the transfer function,

F.,(s) = G(s) F,,(s),

where the primes indicate new functions. The
new output, F,(t), is found by taking the in-
verse transform of Fe(s). The application of
the Laplace transform method is especially
convenient because extensive tables of Laplace
transforms are available. A complete discus-
sion of the mathematical theory of linear
systems can be found in Brown (1961), and
Pipes and Harvill (1970). Aseltine (1958) has
written a particularly readable account of
the theory and of the use of transform meth-
ods in the analysis of linear systems. A simple
example of the Laplace method is given in
Appendix D.

Because a differential equation describing
an organism as a linear system has not been
written, several modifications of the Laplace
method are required when it is applied to R(t)
and B(t). First, the organism is assumed to be
a linear system. That is, a linear differential
equation describing the organism is assumed
to exist. It is important to note that this
assumption does not imply a linear relation-
ship between specific properties of the rein-
forcement and response signals. For example,
it does not imply that response and reinforce-
ment rates are linearly related. Second, the
transfer function, G(s) cannot be calculated
in the usual fashion (i.e., from the differential
equation; cf. the example in Appendix D) but
must be calculated from the ratio of the trans-
formed signals:

B(s)
R(s)-

This means that G(s) will not be explicitly
defined in terms of the organism's character-
istics. As a consequence, it will be impossible
to obtain a new output, Bnew(t), from a new
input in the usual fashion, i.e., by multiply-
ing Rnew(s) by G(s) and consulting a table of
inverse Laplace transforms. However, G(s)
may be treated as a parameter by fixing s at
1 and writing the transfer function as

B(s= 1) _
R(s = 1) e

or

B(s = 1) =yR(s = 1),

where y = G(s = 1), and is a scalar constant
for a given system. This expression relates the
transformed input signal to the transformed
output signal. It is evaluated at s = 1 for con-
venience, since the expression must be true for
all values of s where the real part of s > 0.
Although this expression does not relate the
original input and output functions, R(t) and
B(t), it permits the calculation of relationships
between certain properties of those functions,
as will be shown in the next section.

It is evident that all the benefits of the
Laplace method are not realized in this be-
havioral application. If G(s) were expressed
explicitly, i.e., if a differential equation de-
scribing the system were known, then a B(t)
could be determined for any R(t). With G(s)
fixed as a parameter, however, the final equa-
tion holds only for the specific R(t) that has
entered into the calculation. In the present
case, the final equation holds only for VI
schedules.
Even though the full benefits of the La-

place method are not realized here, the be-
havioral application shows the power of the
method in generating mathematical descrip-
tions of empirical phenomena, even when
one's understanding of the systems that pro-
duce them is inadequate, i.e., even when the
exact forms of the differential equations that
describe the systems are not known.

A Transfer Function on R(t):
The Multivariate Rate Equation
The Laplace method is applied to R(t) and

B(t) in a straightforward manner. The first
step in the calculation is finding the Laplace
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transforms of the two functions. The trans-
form of R(t) is defined as

R(s) = R(t)r'"dt.
O

Substituting R(t) as given by Equation 4 into
this expression produces

oo t, + r
R(s)= ± JAje:;'dt.

Notice that R(t) contributes to the integral
(which can be thought of as the area under
the function) only when t is between ti and
ti+ w. This is because the function assumes
its nonzero value (viz., AR) only during a rein-
forcement pulse. The integral in the above
expression is, in effect, the Laplace transform
of a single reinforcement pulse. The complete
transform is obtained by summing over all
the pulses, as indicated by the infinite sum.
Evaluating the integral gives the trans-

formed version of R(t):

oN
R(s) = (A3/s)(1-e-"' * (10)

A detailed evaluation of the integral is given
in Appendix A.
By analogy, the Laplace transform of B(t) is

oo

B(s) = (A,/s)(I - c-") E e- ' (11)

The transfer function, G(s), is calculated by
taking the ratio of transformed output to
transformed input:

B(s) = G(s). (12)R(s)
Substituting Equations 10 and 11 into Equa-
tion 12, solving for B(s), setting s = 1, and let-
ting y = G(s =1) gives

00 00

A,so - e-w) EZe -to{ = -y Ai(1-e-w) Ee-"4* (13)
i=1 =

The application of the Laplace method is
now complete. It remains only to write Equa-
tion 13 in a useful form. Since we are inter-
ested in the relationship between rates of
responding and rates of reinforcement it will
be helpful to express ti and t¶ in terms of t
and t*, which are the inverses of the VI re-
inforcement and response rates. Notice that t4
and t¶j appear in the infinite sums on either

side of Equation 13. To express ti in terms of
t,, recall from Equation 6 that

n
SZt4-(t_ +W)

tIi= n

This equation states that the sum of the n
interreinforcement intervals (numerator on the
right) divided by n gives the average inter-
reinforcement interval. Since w is a constant,

n

and
nI
Z (t.-t. 1)

t1 +w i=I (14)

Notice that the numerator on the right is
the sum of the differences between adjacent
ti's. If one sums to a t4 other than the nth t
(the latter sum is indicated in Equation 14),
the sum is equal to that t. In other words

i
t, (t - ts_,

j=1

where the new index, j, is introduced for
clarity.4 Summing to i in Equation 14, i.e.,
letting n = i and i = j, produces

, (t,i-t, 1)

This expression is true provided i is sufficiently
large. But since the numerator on the right is
equal to t,:

t,+ww

"This expression is an important one and might be
worthwhile to illustrate with an example. Consider a
specific t,, say the fourth one, t,. The values of to, t1,
t2, and ta are, obviously, all smaller than t,, and t,
may be expressed in terms of them. Since, in this ex-
ample, i = 4, this is accomplished as follows

4
t,= E (t,-ti ,)

j=1
The expression in parentheses is the difference be-
tween adjacent t, s. Where to= 0, the sum of these dif-
ferences, up to j=4, is equal to t,:

t=t (t- to) + t2-t1)+(3 -t,)+(t4-ts)
=11-to +t42-le +a-4__/ + t-_,i3)
t - to

-t4.
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and
i(tI + W) t-- t, .

Equation 15 expresses ti in terms of tI.
The analogous expression for t¶j is

i(i, + w) -t*.

here for the sake of completeness but one can
skip immediately to Equation 22, which is
Equation 20 solved for Ro,t, if desired.

Solving Equation 20 for !*, can be simpli-
fied by making the following substitutions:

(16)

Substituting Equations 15 and 16 into Equa-
tion 13 results in

00

AB(1-e-w*) Ee-(t*I We)
i= 1

00

=,yAxc(i- e-1) eCtz+W'* (17)

The equation now contains the inverses of
the average reinforcement and response rates.
In order to solve the equation for rate of re-
sponding, (1/tIT), however, it is necessary to
evaluate the infinite sums that appear on
both sides of the equation. This may be accom-
plished by the method of partial sums (see
Appendix A for the complete evaluation).
The values of the two sums are

00 -(TO.+WO)

e - -e (18)

and
00 (+w

I e-Ct+1f)i =

i_ 1 e (t-+ )

(19)

tion 17 gives

A4(I e-Iw*)[- 7e_e- (ts.I+w 0

yAjj(1 -e_e-wI (20)-e_-(tz + D)-I

This equation only looks complicated. It is
still of the general form, B(s = 1) = yR(s = 1).
Notice that the transformed versions of the
two signals are perfectly symmetrical. Each
consists of three factors: the pulse amplitude,
a factor (in parentheses) containing the pulse
width, and a factor (in brackets) containing
the average interresponse or interreinforce-
ment interval. Equation 20 is less complicated
than either Equation 17 or Equation 13 be-
cause it contains the desired quantities, viz.,
th and T*I, and has no infinite sums. The
equation is, in fact, an ordinary algebraic
expression, and solving it for 1 /T* = Rout is a

routine matter. The algebra will be presented

a = Aj%(1 - e-1)
b = AB(I-e.w*)

- (t ) -1

N,ya -eN = Ta -cb _e-('+')- I

(21)

With these substitutions, Equation 20 becomes

-e
- T +*

________= N.
e'*+*-1

Multiplying through by e- (t + WI)-1 and
solving for e -(t*z+w*) gives

-(,.,+ws, = N
e -N+1N

Taking the natural logarithm of both sides
and solving for T-#,

PI = ln(I + N-j-w*,

and substituting the value of N as given in
Equations 21 back into this expression pro-
duces

t = ln[1 + (b/ya)(eI -1)] -w.

Recalling from Equations 5 and 8 that t1 =
1 IR,t and t, = 1 lRj, and inverting both sides
gives

Ro=tln[l + (bf-ya)(e'" -1)]-w*

Finally, the complete equation is obtained by
performing the remaining resubstitutions as
specified by Equations 21:

Ro=t{ In [ 1+ AB(1-e)ewI)(e -1)] -W#}W
"2)

Equation 22 is the appropriate form of the
transfer function on R(t), and will be referred
to as the multivariate rate equation, or simply
as the rate equation. It expresses the rate of
responding on a VI schedule as a function
of the rate of reinforcement (Ri"), the ampli-
tude and width of the reinforcement pulses
(AR and w), the amplitude and width of the
response pulses (AB and w#), and the scalar
constant, y, which is characteristic of the
system.
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THE MULTIVARIATE
RATE EQUATION

Equation 22 can be made somewhat more

tractable by the following substitutions:

1/RN= 1/R, + w, (23)

and

I IROuT = 1/R.O. + W* (24)

When w and w# are negligible, the rates with
upper-case subscripts in the above equations
are approximations of the rates with lower-
case subscripts. In most experiments this sim-
plification is reasonable because response and
reinforcer durations are usually brief. Substi-
tuting Equations 23 and 24 (i.e., assuming w

and w* are small) into Equation 22 produces

Rou = In + A(1 _ (/ -1) (25)

This equation can be made more manageable
conceptually by recognizing that it contains
two important factors, both of which appear

inside the brackets on the right-hand side of
the equation. A "rate factor" (the factor in-
volving RIN) is on the extreme right and a

"pulse factor" appears to its immediate left.
The numerator of the pulse factor is a product
that characterizes the response pulses. The
denominator of the pulse factor consists of 'y

and a product that characterizes the reinforce-
ment pulses.

Preliminary Tests of the Rate Equation
To establish a serious claim as a multivari-

ate rate equation for VI performance, Equa-
tion 25 must be shown to be at least as good
as Herrnstein's hyperbola for univariate cases.

Catania and Reynold's (1968) study of VI per-
formance in pigeons and two recent studies
of VI performance in human subjects were

selected to evaluate the accuracy of the rate
equation in describing response rate data gen-
erated by variations in rate of reinforcement.
Equation 25 may be written with two free

parameters for fitting as follows:

ROUT = {ln[a,e EN + a.] I (26)

where a, = [AB(1-e-w*)]/[yAR(l- e-w)] and
ao = 1 - a1. Notice that the equation predicts
that the sum of the two fitting parameters will
be unity. A complete derivation of Equation

26 is given in Appendix B. Initial estimates of
the fitting constants, a, and ao, were obtained
by linear regression using the method of least
squares (Equation 26 is written linearly as
el/RouT = ale1/8RN + ao). These estimates were
then adjusted by iterative methods like those
described by Lewis (1960) so that the sum of
the squares of the residuals about the curve
described by Equation 26 was a minimum.
The percentage of data variance accounted for
by the equation was calculated according to
the method described by deVilliers and Herrn-
stein (1976) and deVilliers (1977). For the sake
of comparison, Herrnstein's hyperbola was
fitted to the data with identical procedures.
Catania and Reynolds (1968) studied key

pecking reinforced by brief access to mixed
grain in six pigeons. For each pigeon grain
was presented on up to six different VI sched-
ules that varied reinforcement frequency from
8 to 300 reinforcements per hour. The rate of
responding generated at each VI value was
determined for all six pigeons. Table 1 shows
the percentage of data variance accounted
for by the rate equation, the percentage of
data variance accounted for by Herrnstein's
hyperbola (Equation 1), and the number of
data points obtained for each pigeon. Data
points were estimated from Catania and Reyn-

Table 1

Percentage of data variance accounted for when re-
sponse rate varies as a function of reinforcement rate.

Percent of variance
accounted for

Rate Herrnstein's
Study No. of points equation hyperbola

Catania &
Reynolds, 1968
P118 5 89.25 89.91
P121 4 84.59 84.24
P129 5 70.83 70.66
P278 6 94.03 93.30
P279 6 97.98 97.93
P281 4 99.25 99.26
Bradshaw
et al., 1976
BF 5 97.41 96.75
BH 5 97.77 97.19
SM 5 95.50 96.34
AM 5 99.18 99.48
Bradshaw
et al., 1977
BJ 5 96.62 96.08
JL 5 99.83 99.94
VG 5 98.94 98.64
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olds' figures. The rate equation describes these
data fairly accurately, accounting for between
71% and 99% of the individual pigeons' data
variance, with a mean of 89% of the variance
accounted for by the equation.

Bradshaw, Szabadi, and Bevan (1976, 1977)
essentially replicated Catania and Reynolds'
experiment with seven human subjects. They
arranged monetary reinforcement (i.e., points
that could be exchanged for money) on five
different VI schedules for each subject's button
pressing. In the first (1976) study, reinforce-
ment rates were varied from 5 to 211 reinforce-
ments per hour and in the second (1977) from
5 to 445 reinforcements per hour. Data points
used for fitting were estimated from figures.
As shown in Table 1, the rate equation de-
scribes these data very accurately, accounting
for between 96% and 100% of the individual
subject's data variance, with a mean of 98%

_
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2 ~~~~100 200
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of the variance accounted for by the equation.
Figure 3 shows plots of the rate equation
fitted to data from four of Bradshaw et al.'s
subjects.
The sum of the fitting constants for the

rate equation was 1.0 (rounded to the first
decimal place; see Appendix B) for every sub-
ject listed in Table 1, as predicted by the
equation.

In general, the rate equation provides as
good a description of these data as does Herrn-
stein's hyperbola. Both equations account for
an average of 94%, of the data variance. These
fits also show that the rate equation is hyper-
bola-like. Since the relationship between re-
sponse rate and amount or immediacy of rein-
forcement is also hyperbolic (deVilliers and
Herrnstein, 1976), the rate equation will pro-
vide a reasonably good fit to these univariate
cases as well.

40r- BH

200

100

100 200

3001

100 200 100 200

REINFORCEMENTS / HOUR

Fig. 3. Rate equation fitted to data from Bradshaw et al.'s (1976) human subjects.
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The only quantity that is properly termed
a parameter in Equation 25 is y. The value of
y characterizes the system under study and
must be extracted statistically or solved for
analytically in cases where the differential
equation describing the system is unknown.
The quantities AB, w#, AR and w, on the
other hand, characterize the input and out-
put of the system, are variable (i.e., experi-
mentally manipulable), and are presumably
susceptible to direct measurement (see next
section). Unfortunately, the structure of the
fitting constants of Equation 26 do not permit
a determination of the value of y. For Catania
and Reynolds' six pigeons, the values of a1 =
[AB(I e-O)]/[yAR(1 - e-w)] range from .05
to 2.63, with a median value of .12. The high
value is from P121 and is extremely deviant
since a, is less than .16 for all the other pigeons.
For Bradshaw, et al.'s human subjects a, ranges
from .01 to .12 with a median value of .04,
which is an order of magnitude less than the
median value for the pigeons. The most that
can be concluded from these figures is that
the product yAR(l- e-w) is an order of mag-
nitude bigger than the product AB( -e-we)
for most of Catania and Reynolds' pigeons,
and is two orders of magnitude bigger than
AB(l-e-w') for most of Bradshaw et al.'s
human subjects. This says nothing, of course,
about the relative sizes of the quantities that
appear in these products.
Although Equation 25 is not a rectangular

hyperbola like Herrnstein's equation, it yields
a rectangular hyperbola of the form

x
Y a+ bx'

in the variates el'RIN and e-1/oUT:

a+ be-/IP

where a = [AR(1-e-w-)]/[.yAR(l- e-t)] and
b = 1 - a. Rearranging this equation produces
a hyperbola in Herrnstein's form:

_11R°JT Vi'I?e
e e2fre

e /'N + ab-1

(The complete derivation of both equations
is given in Appendix C.) Thus Equation 25
not only accounts for certain univariate cases
as well as Herrnstein's equation, but it also
yields a form of Herrnstein's equation.

Finally, Equation 25 predicts a form of
ordinary matching in concurrent situations:

e 3'OUT -1 eB11N -j
eClOUT_ 1 ee13IN_ 1

where the numerical subscripts refer to the
two response alternatives. The rate equation
also predicts a form of proportional ratio
matching (deVilliers, 1977):

e1/2lour-1 - Fal e1/,N-1

e12Rour-1 a.L e2/R2IN 1'
where a1= [A.(l- e-w1)]/[A .(1 - e-wi)] and
a2 = [A2(l - e-w'2)]/[A28(1 - e-ws)]. Propor-
tional ratio matching is the more general state-
ment of the matching law since it accounts for
deviations from matching that are commonly
found in concurrent situations (Baum & Rach-
lin, 1969). The complete derivation of both
forms of matching is given in Appendix C.

Application to Multivariate Cases
Equation 25 is reproduced here for con-

venience:

Ror= In 1+ A(1-e-w) (e 1)]}1

(25)
In this equation, a reinforcement pulse is
characterized by the product AR(1 -e-w),
where AR is a point along the value-like di-
mension, R(t), and w is the pulse width. Rein-
forcement pulse amplitude and width may be
consolidated into a single quantity, reinforcer
"power" (cf. Herrnstein, 1971), as follows:5

Making this substitution in Equation 25 gives

Rour = {ln[ ±+ (1 P ) (eI1)}
(27)

Reinforcer power is conceptually similar to
reinforcer value. In Equation 27, PR absorbs
all reinforcer characteristics, other than rate
of delivery, including the value-like amplitude
parameter. This comprehensiveness permits di-
rect measurement of PR, which is not possible
in the case of AR. The value of PR may be de-
termined in a concurrent VI VI schedule
where relative response rate matching is as-

5Notice that when w is small, (1- ew) w, and Pi
mARW. That is, when w is small, PR is approximately
equal to the area of a reinforcement pulse.
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sumed to hold. When matching is assumed
and reinforcement rates are held constant
across response alternatives, deviations from
matching generated by reinforcers that dif-
fer in amount, immediacy, type, or in any
other characteristic, may be used to scale the
power of the reinforcers studied. The scaled
reinforcer values can be taken as determina-
tions of PR. Several authors have discussed
this type of matching-based reinforcer scaling
(Baum, 1974; Herrnstein, 1971; Miller, 1976).
A test of Equation 27 is possible on data

collected by Miller (1976). He studied the key
pecking of four pigeons on concurrent VI VI
schedules of reinforcement. Reinforcement
consisted of three types of grain, viz., buck-
wheat, hemp, and wheat, each of which was de-
livered on five different component VI sched-
ules. Variable-interval values were selected so

as to vary reinforcement rate from approxi-
mately 10 to 50 reinforcements per hour. Each
pigeon was exposed to all combinations (15)
of grain type and reinforcement rate. Based on

deviations from matching, Miller scaled the
"quality" or power of the three types of grain,
choosing buckwheat as a standard, equal to
10 units (dimension unspecified) of reinforcer
power.

Since Miller determined the response rate
generated by each type of grain at all five
rates of reinforcement, Equation 27, where
ROUT is expressed as a joint function of PR
and RIN, can be fitted to the data by multiple
regression techniques. Equation 27 is written
for fitting as follows:

ln(ellOUT _ 1) = a2ln(l /PB) + a,Jn(el/B1N - 1) + ao
(28)

where a2 = a3 = 1, and ao = ln{[AB(l -e-w)]
/y}. A complete derivation of Equation 28 is
given in Appendix B. Notice that the equation
predicts that two of the regression constants
(a2 and a3) will equal unity.6 Figure 4 shows
fits of Equation 28 to data from the individual
birds and to data averaged across all birds.
The coordinate axes have been rotated 1800
for convenience. The top figure in the lower
right of each graph is the square of the multi-
ple regression coefficient, R, which estimates

6This equation must be fit as written for the same
reason that Equation 26 had to be fit with two instead
of one free parameter, viz., because w =# w O for any
real behavior or reinforcement. See explanation in
Appendix B.

the proportion of data variance accounted for
by the equation. The values of the fitting con-

stants, a2 and a3, are also given for each func-
tion. Except for Pigeon 254, these values are

very close to 1, as predicted by the rate equa-

tion.
A more stringent test of Equation 27 is pos-

sible by restricting the regression to a single
variate given by the algebraic combination of
RIN and PR as specfied by the equation. Thus,
Equation 27 can be written as

el/°ur= [ e
ri/IN I

e = e, -R +a,,

where a, = [AB(l - e-w')]/Iy and ao = 1. A
complete derivation of Equation 29 is given
in Appendix B. Notice that the equation pre-
dicts that ao will equal unity (see footnote 6).
Table 2 shows the results of ordinary linear
regression by the method of least squares. The
coefficients of determination (product-moment
correlation coefficient squared) show that, even
for this more stringent test, Equation 29 ac-
counts for a large proportion of the data vari-
ance. In addition, the value of ao is 1 for all
birds, as predicted by the equation.
As was the case for the univariate fits, the

structure of the fitting constants for these
multivariate fits do not permit estimates of y,
nor do they provide information about the
relative sizes of the other quantities that ap-
pear in the constants.

DISCUSSION
It is an interesting novelty in behavioral

science to find an a priori mathematics that
produces a useful empirical equation. In addi-
tion, the simplicity of a rate equation that is
written in two reinforcement variables is ap-
pealing. The two variables, power and rate
of delivery, constitute a complete description
of reinforcement. Power is readily determined

Table 2
Results of linear regression restricted to the single vari-
ate, (e I/RIN - 1)/PB

Subject r2

P254 .95
P255 .96
P452 .97
P43 .91

Average function .99
Note. Data on which table is based are from Miller

(1976). There are fifteen data points per fit.
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-5.0 P254 -5.0' P43

-4.0 - -4.0 -

-3.0 --3.0-

-2.0 - -2.0t
R2 =0.97 * R2 0.95

-0 02 =0.6 1.0 a2 1-1
03

= 07 03 1I.I
/ I I I I I I I
-1.0 -2.0 -3.0 -4.0 -5.0 -1.0 -2.0 -3.0 -4.0 -5.0

-5.0 --5.0-
P452 P255

-4.0 - -4.0 -

-3.0 -3.0 -

0

-2.0 --2.0 -

R2 = 0.95 * R2 = 0.97
-1.0 a2=0.9 -1.0 / a02 10

03 =1.1 03= 1

I I I I I I I I I
-1.0 -2.0 -3.0 -4.0 -5.0 -1.0 -2.0 -3.0 -4.0 -5.0

-5.0 AVERAGE

-4.0 -

-3.0-

-2.0-

R2 =:.99
-1.0 / 020-.9

a3 = 1.0

-1.0 -2.0 -3.0 -4.0 -5.0

a21In (I/PR) + a3In (el/RIN -I) + ao

Fig. 4. Rate equation fitted to data from Miller's (1976) pigeons where rate and power of reinforcement were
varied simultaneously. The abscissae and ordinates show predicted and obtained values respectively. The square
of the multiple regression coefficient (R) is given for each fit.
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in a concurrent situation where matching is
assumed to hold.

It is important to recognize that there are
two distinct steps in the calculation of the
multivariate rate equation. First, R(t) and B(t)
are written in explicit mathematical form, and
second, a transfer function is written between
them. Each of these steps requires a separate
set of assumptions. For different inputs (i.e.,
for schedules other than VI), the assumptions
required to write R(t) and B(t) may change,
but the single assumption required to write
the transfer function, viz., that the system is
linear, will always be the same. Although this
latter assumption is not very restrictive, the
form of the transfer function in behavioral
applications depends not only on the assump-
tion of linearity but also on the way in which
R(t) and B(t) are written. The assumptions
necessary for writing R(t) and B(t) restrict the
mathematics and result in a transfer function
with properties that are not required by the
mere assumption of linearity. In the VI case,
for example, a rate equation where response
rate is directly proportional to reinforcement
rate (i.e., ROUT= kRIN) does not contradict
the assumption of linearity. But when the
additional restrictions required by writing
R(t) and B(t) as in Equations 4 and 7 are
added (recall, for example, the third assump-
tion which implies an upper limit on the rates
of reinforcement and responding), this direct
proportionality does not hold.

It is also important to recognize that the
modification of the Laplace transform method
that is required for behavioral applications
means that any equation derived by the method
holds only for the input that has entered into
the calculation. In the present case, this means
that the multivariate rate equation holds
only for VI inputs. It should be possible,
however, to calculate transfer functions for
other simple schedule inputs (or, indeed, for
any input) by writing the R(t)'s and B(t)'s
properly.
A noteworthy feature of Equation 27 is

the appearance of the product AB( -e-w).
This "behavioral" product is analogous to
the "reinforcement" product, Aj(1 -e-1) =

PR. It is possible that a symmetric scaling pro-
cedure for response forms will produce values
analogous to PR that may be substituted into
the rate equation. If so, only one free param-
eter will remain in Equation 27, viz., y, and

its value may be estimated by statistical
methods.

Research directions with respect to the mul-
tivariate rate equation are fairly clear. Further
tests of simultaneous variations of PR and RIN
are necessary, particularly in view of the fact
that in Miller's experiment, both quantities
were varied over relatively small ranges. The
almost unexplored area of response form scal-
ing, and its relationship to Equation 27 needs
to be studied, and the forms of matching pre-
dicted by the equation require testing.

APPENDIX A

Evaluation of
00 t4+o

R(s) = 5 e|Ae

Since AR is a constant, it may be removed
from both the integral and the infinite sum:

00 f.944

R(s) = Ag e -dt

The integral in the above expression is an
elementary form and is not difficult to evalu-
ate. Since fexdx = &x1a,

00 tt+W
R(s) = As -e"/s

Removing the constant, s,

00 t4+W

R(s) = (A,/ls) - e-&t

and substituting in the limits of integration
gives

R(s) = (As/s) 0e0-e ' + e 4)
i=1

or

R(s) = (Aj,ls) (e e-e ' ) .

Factoring,

00

R(s) = (ARis) z e *" (1 -e-8)
i= 1

and removing the constant factor, (1 -e-8),
gives the transformed version of R(t):
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oo

R(s) = (AzIs) ( -e-'e") , e (10)

Evaluation of Infinite Sums
Consider the kth partial sum, Sk, of the in-

finite sum appearing on the right hand side
of Equation 17:

s =e (F +W)2 +e(IZ)ShF -I+) + e~(t ) + + e-(tz + w)k

Multiplying both sides by e-(tz+w) gives
e +' Sk = e -(tt+ ))2 + e 3(tz+13+

-(t1+t)WA (t1+w)(k+i)
+e +e

Notice that the sum on the right is the (k+ l)th
partial sum minus the quantity e- (tI+w). Thus

e S' -=St+ls-e
In the lim Sk =Sk+1 since the series is con-
vergent. In other words, given any e > 0, a k
may be found such that

SJ ,+L- Sj%I<e,Eallh>k.
Accordingly, in the limit,

e 'tj+W)S= S _ e-(tI+)

and

e -t +tv) __S= _ -(tC + W)

00 00

S.x [eCI 1 ] =-eI
Solving for S.O and stating the equation prop-
erly:

-(t + w)
lim S,==

k - oo e-(t+w) _

Finally, since the limit of the partial sums is
the value of the infinite sum,

=
(t + w)

t1 e,I+o)e-1

The infinite sum on the left hand side of
Equation 17 is evaluated in an identical
fashion.

APPENDIX B

Derivation of Equation 26
From Equation 25,

Rou= {ln I1 +-A(' - e-,) (/ -1)]}

eLOUr Ag(i - ) (el 1+-yAB(I- e-w)
(3BN-'+1

ei/ROUT AB(1 - ew ) el/BIN + -_ AB(I -e) 1

yAs(l-e-W) yA(l -e-w)J

Let a1 = [AB(-e-w*)]/[yAR(l-e-w)] and
ao = 1 - a,; then

e2/ OUT = ale / IX + ao,

and

RouT { In [ale /+a,] }I. (26)

It may seem that since Equation 26 has only
one free parameter, it should be fit with ao
fixed at 1 - a,:

RourT={f n [aleiIN +( a)] } -1. (BI)

But it is important to recognize that Equa-
tions 23 through 26 constitute a simplification
that is possible only when w and w* are as-
sumed to be negligible. When this is not the
case, Equation Bi should be written

Rout ={ in [(aewe-*ei/)eBin + (1 -aie-s"] }
(B2)

This equation is readily obtained from Equa-
tion 22 by letting [AB( -e-ew')][yAR(l-
e-$)] = a,. Inverting, adding w# to, and expo-
nentiating both sides, and rearranging terms,
gives

eI/B.owtw* /Bae +O +(I- ).

Multiplying both sides of this equation by
e-w*, taking the natural logarithm, and in-
verting, produces Equation B2. Letting a,' =
a1ewe-w and ao' = (1 - al)e-w*, Equation B2
may be written with two free parameters for
fitting as

Rot { in[ie/ +aOP] }I
It is clear that this equation must be fit with
two free parameters since ao' & 1 - all. But no-
tice that Equation B2 (two free parameters)
reduces to Equation B1 (one free parameter)
only when w = W# = 0. For real behavior and
real reinforcement, w and w# may be negli-
gible, but they can never equal zero. Hence,
the statement ao = 1- a, is never strictly true,
and Equation B1 must be fit with two free
parameters. If the assumption that w and w#
are negligible is reasonable, then the sum of
the two free parameters will be approximately
equal to unity.
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Derivation of Equation 28
From Equation 27,

RouT =n [I+ AB(I p ) (el/BIN ]}

i/BOUT - AB(1 -eW) (i/BIN - 1),
-yPB

ln( iOUr- 1) = ln(I/PB) + in(ei/BIN- 1)

-1 In [AB(1 e)w]
And

In(e2/ u-1) = a2ln(IIPz) + asln(e I-- 1) + ao,
(28)

where a2 = a3 = 1, and ao = ln{[AB( -e-w')]
Iv}*

Derivation of Equation 29
From Equation 27,

ROUT In [1 + ( P (e 1) ]}

eI/BOUr = -

A -ew)[-e
B

e -l +

Hence

e =/BOU [ e + ao,

where a, = [AB(l -e-w)]/y and ao= 1.

APPENDIX C

Derivation of Hyperbolic Forms
From Equation 25, as in Appendix B,

RoUT = ln[I + A( ) -1]
VyA Bi( -iwj

e/BourT AB(i e*) e/BINy+ r1_ AB(1- ew)1
A B(i-e-w) yAB(i -e-)

Let a = [AB(l - e-w')]I[yA,(l- e-w)] and b
= 1- a; then

i/BOT = aellz1 + b

1 - a be-iV/N
e i/BO ¢ i/BIN + -i/BINreC 2ur -1'm

e
1fz

1 +bei1/Ba N

-i ROUT -i/BIN
e e

-IL/Bour

a+be

Herrnstein's form is produced by multiplying
the right hand side of this hyperbola by b-1/
b-1

-1/ROUT - b e
e -2 zBr + ab

Derivation of Forms of Matching
From Equation 25,

yA-,(I -;e1) (e

and

10UI zA2 (I -e2w) (e 1),

The numerical subscripts (1 and 2) refer to the
two response alternatives. Let a, = [AiD (1 -
e-w1)]1[A1(j - e-wi)] and a2 = [A2B ( -
e-w"')]/[A2B(l - e-w2)]; then

i/Bou a, ie /B1z

and
eI/BZ2OUT a. (el32zi/B

ly()

Dividing these two equations gives a form of
proportional ratio matching

el/B'ouT - i a,] e -

ei/BROUT -1i LaJ el/BSIN-i

When a, = a2, that is, when the reinforcement
spikes for the two alternatives are identical,
and the response spikes are also identical, a
form of relative proportion matching is pre-
dicted:

eI/B 2oUT e11Al' -i

e2/BROUT-i e"nIN-1

APPENDIX D
The calculation of a transfer function can

be illustrated with a simple example. Consider
the following differential equation of the first
order:

F4(t) = F.(t) + k dF,(t)
dt

where F4(t) is some input function, FO(t) is the
resulting output function, and FO(t = 0) =0,
i.e., the output at time t = 0 is 0. The coeffi-
cient, k, is a constant property of the linear
system.
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Taking the Laplace transform of both sides
of this equation gives

00 00 00

J F,(t)e-"dt = J F,(t)e"8'dt + k J d'( e-8tdt.
0 0 0

Evidently,
00dF.(t)

-ttF,(s) = F.(s) + k | d e"dt.
0

A table of Laplace transforms shows that the
transform of dF(t)/dt is sF(s) - F(t = 0). Thus,
recalling that F0(t = 0) = 0, the remaining in-
tegral is equal to sF0(s), and the complete
transformed equation is written

F4(s) = F,(s) + ksF,(s).
Factoring,

Ft(s) = F.(s)(l + ks),

and calculating the transfer function, i.e., the
ratio of transformed output to transformed
input, gives

F,(s) 1 s-
Fg(s) I +ks =G(s)

Thus
F.(s) = G(s)F4(s)

where, for this linear system, G(s) = 1/(I + ks).
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